

Issued date: Apr. 26, 2018

Project No.: 17Q122104

Product: Network Attached Storage

Model: TS-1232XU, TS-1232XU-RP(Refer to 3.1 for more details)

Applicant : QNAP Systems, Inc.

Address: 3F, No. 22, Zhongxing Rd, Xizhi Dist., New Taipei City, 221, Taiwan

Report No: WD-EV-R-180140-00

According to

V-3/2016.11, Class A V-4/2012.04

Authorized Signatory:

Vet (m)

/ Ken Huang

Wendell Industrial Co., Ltd Wendell Electrical Testing Lab.

Add: 6F/6F-1, No.188, Baoqiao Rd., Xindian Dist., New Taipei City 23145, Taiwan R.O.C.

Page 1 of 49 1.0

Table of Contents

1 C	ertification	5
1.1	Summary of Test Result	6
2 To	est Configuration of Equipment Under Test	7
2.1	Test Facility	
2.2	Measurement Uncertainty	
2.2.1	•	
2.2.2		
2.2.3	<u>*</u>	
2.2	S Radiated Emission test	0
3 G	eneration Information	9
3.1	Description of EUT	9
3.2	Description of Test Modes	12
3.3	EUT Operating Condition	12
3.4	Description of Support Unit	
3.5	Configuration of System Under Test	13
4 E	mission Test	1/1
4.1	Conducted Emission Measurement (Frequency Range 150 KHz-30MHz)	
4.1.1		
4.1.2		
4.1.3		
4.1.4 4.1.5		
4.1.6	*	
4.1.7		
4.2	Conducted Emission at Telecommunication Ports Test	
4.2.1		
4.2.2 4.2.3		
4.2.2		
4.2.5		
4.2.6	1	
4.2.7		
4.3	Radiated Emission Measurement	
4.3.1 4.3.2		
4.3.3		
4.3.4		
4.3.5		
4.3.6	<u>.</u>	
4.3.7		
	- · ·	

History of this test report

Report No.	Issue date	Description
WD-EV-R-180140-00	Apr. 26, 2018	Initial Issue

Declaration

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us.

Page 3 of 49 1.0

History of supplementary report

Report No.	Issue date	Description
WD-EV-R-180140-00	Apr. 26, 2018	Original report

Declaration

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us.

Page 4 of 49 1.0

1 Certification

Product: Network Attached Storage

Brand Name: QNAP

Model No: TS-1232XU, TS-1232XU-RP (Refer to 3.1 for more details)

Applicant: QNAP Systems, Inc.

Tested: Mar. 14 ~ Apr. 24, 2018

Standard: V-3/2016.11, Class A

V-4/2012.04

The above equipment (Model: TS-1232XU, TS-1232XU-RP) has been tested by **Wendell Electrical Testing Lab.**, and found compliance with the requirement of the above standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Page 5 of 49 1.0

1.1 Summary of Test Result

The EUT has been tested according to the following specifications:

Emission				
Standard Test Item		Limit	Result	Remark
	Conducted disturbance at mains terminals	Class A	Pass	Meets the requirements
V-3	Conducted disturbance at telecommunication ports test	Class A	Pass	Meets the requirements
	Radiated disturbance	Class A	Pass	Meets the requirements

Note: Test record contained in the referenced test report relate only to the EUT sample and test item.

Page 6 of 49 1.0

2 Test Configuration of Equipment Under Test

2.1 Test Facility

Conducted disturbance at mains terminals and Conducted disturbance at telecommunication ports Tests

W01: 5F-1, No.188, Baoqiao Rd., Xindian Dist., New Taipei City 23145, Taiwan (R.O.C.)

Radiated emission Test (OATS)

W03: No.38-20, Mujiliao, Sanzhi Dist., New Taipei City 252, Taiwan (R.O.C.)

ACCREDITATIONS

The laboratories are accredited and approved by the TAF according to ISO/IEC 17025.

Page 7 of 49 1.0

2.2 Measurement Uncertainty

The measurement instrumentation uncertainly consideration contained in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.2.1 Conducted Emission test

Test Site	Measurement Freq. Range	${ m dB}\;(U_{ m cispr})$	VCCI Site Registration No.	Note
W01	150 kHz~30 MHz	3.19	C-4684	N/A

2.2.2 Conducted emission at telecom port test

Test Site	Measurement Freq. Range	$dB (U_{cispr})$	VCCI Site Registration No.	Note
W01	150 kHz~30 MHz	3.16	T-2224	N/A

2.2.3 Radiated Emission test

Test Site	Measurement Freq. Range	Ant	dB (Ucispr)	VCCI Site Registration No.	Note
	30 MHz ~ 200 MHz	V	4.29		N/A
W03	30 MHz ~ 200 MHz	Н	3.35	R-20028	N/A
WUS	200 MHz ~ 1000 MHz	V	3.87	R-20028	N/A
	200 MHz ~ 1000 MHz	Н	3.48		N/A
	1 GHz ~ 3 GHz	V	4.47		N/A
W/02	1 GHz ~ 3 GHz	Н	4.44	C 20040	N/A
W03	3 GHz ~ 6 GHz	V	4.86	G-20040	N/A
	3 GHz ~ 6 GHz	Н	4.47		N/A

Page 8 of 49 1.0

3 Generation Information

3.1 Description of EUT

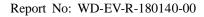
Product	Network Attached Storage
Brand	QNAP
Model No.	TS-1232XU, TS-1232XU-RP (Refer to Note for more details)
Applicant	QNAP Systems, Inc.
Received date	Mar. 02, 2018
EUT Power Rating Refer to Note for more details	
Model Differences Refer to Note for more details	
Operating System	N/A
Data Cable Supplied	N/A
Accessory Device	N/A
I/O Port	Please refer to the User's Manual

Note:

1. The following models are provided to this EUT.

D 1 N	M. J.IN.		Difference
Brand Name	Model No.	Package	Main marketing channel
	TS-1232XU		
	TS-1232XU-2G		
	TS-1232XU-4G		
	TS-1232XU-8G		
	TS-1232XU-16G		
	TS-1232XU-32G		
	TS-1232XU+		
	TS-1232XUPlus		
	TS-1232U		
	TS-1232U+		
	TS-1232AU		
	TS-1232AXU		
QNAP	TS-1232XU Pro	ONAP Brown Box	For household & business storage
QNAF	TS-1232XU R2	QIVAF BIOWII BOX	related distributors
	TS-1232XU II		
	TS-1232XU-RP		
	TS-1232XU-RP-2G		
	TS-1232XU-RP-4G		
	TS-1232XU-RP-8G		
	TS-1232XU-RP-16G		
	TS-1232XU-RP-32G		
	TS-1232XU-RP+		
	TS-1232XU-RPPlus		
	TS-1232U-RP		
	TS-1232U-RP+		
	TS-1232AU-RP		

Page 9 of 49 1.0


TS-1232AX	U-RP		
TS-1232XU-	-RP Pro		
TS-1232XU-	-RP R2		
TS-1232XU-	-RP II		
NAS-1232X	U-G		
NAS-1232X	UG		
G1232XU			
1232XU-NA	S		
NAS-1232X	U II		
NAS-1232X	U+		
NAS-1232X	U Plus		
NAS-12bay	AL324	C ' D D	For business storage device bidding projects and cooperation projects
NAS-1232 I	[Generic Brown Box	
NAS-1232X	U-RP-G		
NAS-1232X	U-RPG	(without Q1111 logo)	projects
G1232XU-R	P		
1232XU-RP	-NAS		
NAS-1232X	U-RP II		
NAS-1232X	U-RP+		
NAS-1232X	U-RP Plus		
NAS-12bay	AL324-R		
NAS-1232U	-RP II		

2. The EUT uses the follow internal power supply:

Power Supply for	Power Supply for TS-1232XU		
Brand	DELTA		
Model DPS-250AB-44D			
Input Power 100-240Vac, 3.5A, 48~63Hz			
Output Power	+3.3Vdc, 6A +5Vdc, 12A +12Vdc, 17A +5VSB, 2A -12Vdc, 0.5A MAX 250W		

Power Supply for TS-1232XU-RP		
Brand DELTA		
Model	DPS-250AB-81A	
Input Power	100-240Vac, 5A-2.5A, 50Hz-60Hz	
Output Power	+12Vdc, 20A +5VSB, 2A MAX 250W	

Page 10 of 49 1.0

3. The EUT contains following components.

Item	Brand	Model	Qty.
Main board	QNAP	QZ26 REV:1.1	1
CPU	Annapurna Labs	AL324 (1.7GHz)	1
RAM	ADATA	AD4U2400J4G17-BHYA (4GB)	1
HDD	SEAGATE	ST1000VN002 (1TB)	12
HD Backplane	QNAP	QZ33 REV:1.1	1
DC Fan	AVC	DSO7025B12S	2

4. The EUT's highest operating frequency is 1.7GHz. Therefore the radiated emission is tested up to 6GHz.

Page 11 of 49 1.0

3.2 Description of Test Modes

Test results are presented in the report as below.

Test Result	Test Condition					
	Conducted emission test					
A	TS-1232XU, Full mode					
В	TS-1232XU-RP, Full mode					
	Conducted emission test at telecom port test					
A	TS-1232XU, Full mode, LAN(10Mbps/100Mbps/1Gbps)					
В	TS-1232XU-RP, Full mode, LAN(10Mbps/100Mbps/1Gbps)					
	Radiated emission 30MHz ~ 1GHz test					
A	TS-1232XU, Full mode					
В	TS-1232XU-RP, Full mode					
	Radiated emission above 1GHZ test					
A	TS-1232XU, Full mode					
В	TS-1232XU-RP, Full mode					

Note:

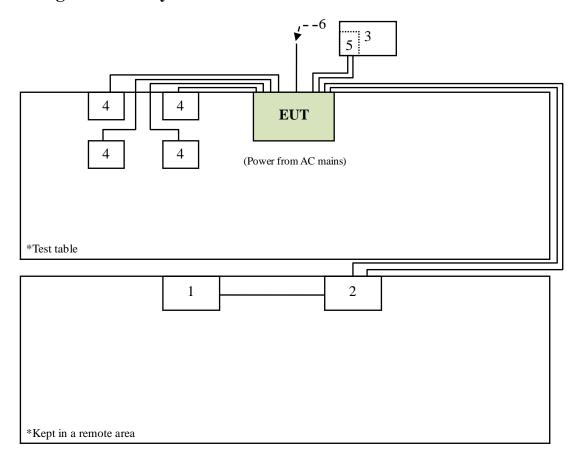
- 1. For conducted emission, the EUT has been pre-tested frequency was 50MHz and 60MHz, and 60MHz was the worst case for final test.
- 2. For conducted emission test at telecom port, the EUT has been pre-tested frequency 50MHz and 60MHz, and 60MHz was the worst case for final test.
- 3. For radiated emission, the EUT has been pre-tested frequency was 50MHz and 60MHz, and 60MHz was the worst case for final test.

3.3 EUT Operating Condition

- a. Placed the EUT on the test table.
- b. Prepare server PC to act as a communication partner and placed it outside of testing area.
- c. The EUT was connected to the server PC with LAN cable.
- d. The communication partner sent data to EUT by command "ping" via LAN.
- e. The EUT read and write data with Internal HDD and External HDD.

Page 12 of 49 1.0

3.4 Description of Support Unit


The EUT has been conducted testing with other necessary accessories or support units.

_								Remark
Item	Equipment	Brand	Model No.	Serial No.	FCC ID	Data Cable	Power Cord	Kemark
1	Server PC	DELL	OPTIPLEX 380	2C6742S	FCC DoC Approved	1m non-shielded RJ45 cable	1.8m non-shielded cable	-
2	Switch HUB	D-Link	DGS-1008A	QBIH2DB0020 31	FCC DoC Approved	20m non-shielded RJ45 cable	DC: 1.2m non-shielded cable with one core	-
3	PC	DELL	D24M	MSIP-RMM-E 2K-D24M001	PD93165NG	N/A	1.8m non-shielded cable	-
4	External Hard Drive	SONY	HD-EG5	N/A	FCC DoC Approved	0.6m shielded cable	N/A	-
5	Dual-Port 10GbE SFP+ Network Card	ONAP	LAN-10G2SF- MLX	N/A	N/A	1.5m non-shielded SFP DAC cable (x2)	N/A	Supplied by client
6	Console cable	N/A	N/A	N/A	N/A	0.93m non-shielded cable	N/A	-

Note: 1. The core(s) is(are) originally attached to the cable(s).

2. Item 1-2 acted as communication partners to transfer data.

3.5 Configuration of System Under Test

Page 13 of 49 1.0

4 Emission Test

4.1 Conducted Emission Measurement (Frequency Range 150 KHz-30MHz)

4.1.1 Limit of Conducted Emission Measurement

Emanonov (MHz)	Class A	(dBuV)	Class B (dBuV)	
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 to 0.5	79	66	66 to 56	56 to 46
0.50 to 5.0	73	60	56	46
5.0 to 30.0	73	60	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correction Factor = Insertion loss of LISN + Cable loss + Attenuator factor

Margin Level = Measurement Value –Limit Value

4.1.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	TWO-LINE V-NETWORK	R&S	ENV216	CT-1-025-1	Apr. 01, 2017
2	EMI Test Receiver	R&S	ESCI	CT-01-024	Mar. 29, 2017
3	V-LISN	Schwarzbeck	NSLK8127	CT-1-104-1	Oct. 17, 2017
4	Test Cable	HANRUIN	5D-FB	CT-1-069-2	Jul. 26, 2017
5	50ohm Termination	N/A	N/A	CT-1-065-1	Mar. 29, 2017
6	Measurement Software	EZ-EMC	Ver: FA-03A	CT-3-012	No calibration request

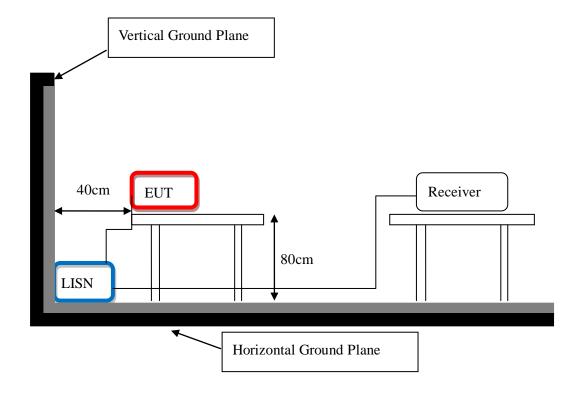
Note: 1. The calibration interval of the above test instruments is 12 months.

Page 14 of 49 1.0

4.1.3 Test Procedure

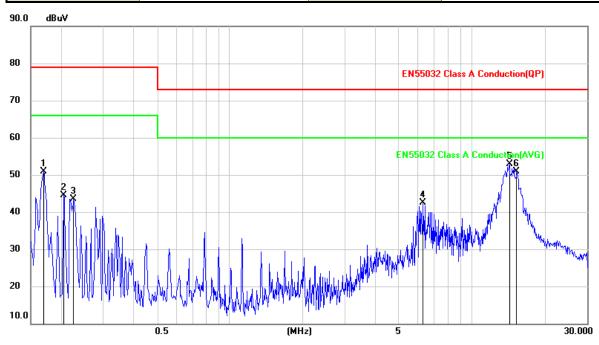
- a. The EUT was placed 0.8 meter height wooden table from the horizontal ground plane with EUT being connected to power source through a line impedance stabilization network (LISN). The LISN at least be 80 cm from nearest chassis of EUT.
- b. The line impedance stabilization network (LISN) provides 50 ohm/50uH of coupling impedance for the measuring instrument. All other support equipments powered from additional LISN(s).
- c. Interrelating cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle. All I/O cables were positioned to simulate typical usage.
- d. All I/O cables that are not connected to a peripheral shall be bundle in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- e. The EMI test receiver connected to LISN powering the EUT. The actual test configuration, please refer to EUT test photos.
- f. The receiver scanned from 150kHz to 30MHz for emissions in each of test modes. A scan was taken on both power lines, Line and Neutral, recording at least six highest emissions.
- g. The EUT and cable configuration of the above highest emission levels were recorded. The test data of the worst case was recorded.

4.1.4 Deviation from Test Standard


No deviation

Page 15 of 49 1.0

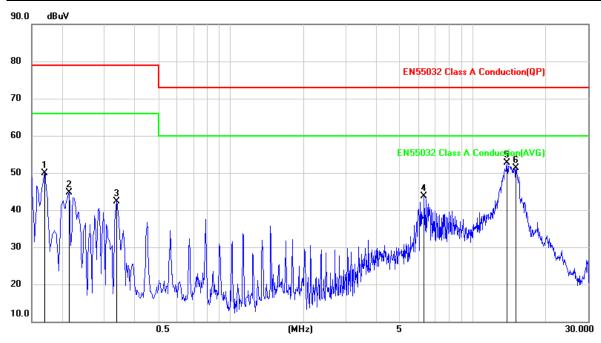
4.1.5 Test Setup


Note: Please refer to 4.1.7 for the actual test configuration.

4.1.6 Test Result

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Phase	L
Tested by	Guanwei Liao	Test Mode	A

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1700	41.27	9.58	50.85	79.00	-28.15	peak
2	0.2060	34.85	9.58	44.43	79.00	-34.57	peak
3	0.2260	33.96	9.58	43.54	79.00	-35.46	peak
4	6.2980	32.97	9.62	42.59	73.00	-30.41	peak
5	14.2900	43.31	9.65	52.96	73.00	-20.04	peak
6	15.3580	41.27	9.65	50.92	73.00	-22.08	peak

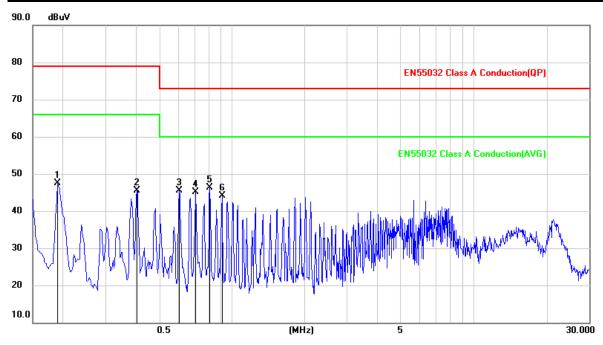

- Remark: 1. QP = Quasi Peak, AVG = Average 2. Correction Factor = Insertion loss of LISN + Cable loss
 - 3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value -Limit Value

Page 17 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Phase	N
Tested by	Guanwei Liao	Test Mode	A

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1700	40.33	9.67	50.00	79.00	-29.00	peak
2	0.2140	35.03	9.66	44.69	79.00	-34.31	peak
3	0.3379	32.66	9.66	42.32	79.00	-36.68	peak
4	6.2980	33.99	9.70	43.69	73.00	-29.31	peak
5	13.8980	42.95	9.77	52.72	73.00	-20.28	peak
6	15.0780	41.52	9.78	51.30	73.00	-21.70	peak

Remark: 1. QP = Quasi Peak, AVG = Average

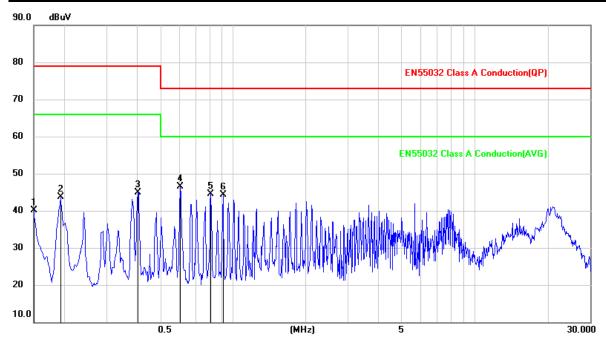

- Correction Factor = Insertion loss of LISN + Cable loss
 Measurement Value = Reading Level + Correct Factor
 Margin Level = Measurement Value Limit Value

1.0 Page 18 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Phase	L
Tested by	Guanwei Liao	Test Mode	В

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1900	38.00	9.58	47.58	79.00	-31.42	peak
2	0.4060	35.88	9.57	45.45	79.00	-33.55	peak
3	0.6058	35.95	9.57	45.52	73.00	-27.48	peak
4	0.7100	35.47	9.58	45.05	73.00	-27.95	peak
5	0.8100	36.70	9.58	46.28	73.00	-26.72	peak
6	0.9100	34.45	9.58	44.03	73.00	-28.97	peak

Remark: 1. QP = Quasi Peak, AVG = Average


- 2. Correction Factor = Insertion loss of LISN + Cable loss
- 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

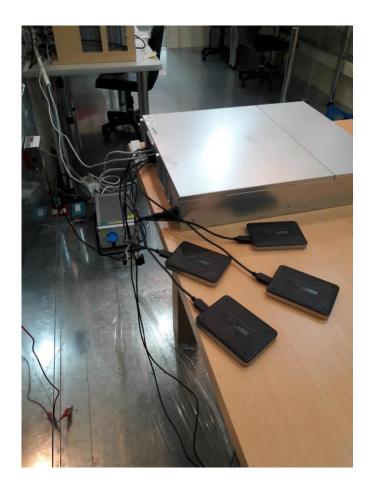
1.0 Page 19 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Phase	N
Tested by	Guanwei Liao	Test Mode	В

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1500	30.36	9.67	40.03	79.00	-38.97	peak
2	0.1940	34.02	9.66	43.68	79.00	-35.32	peak
3	0.4060	35.29	9.66	44.95	79.00	-34.05	peak
4	0.6058	36.80	9.66	46.46	73.00	-26.54	peak
5	0.8100	34.94	9.66	44.60	73.00	-28.40	peak
6	0.9100	34.58	9.66	44.24	73.00	-28.76	peak

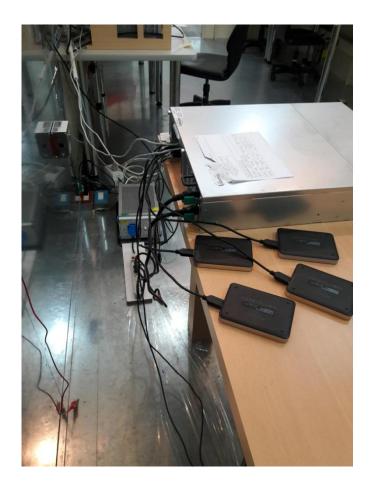
- Remark: 1. QP = Quasi Peak, AVG = Average
 2. Correction Factor = Insertion loss of LISN + Cable loss
 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

Page 20 of 49 1.0



4.1.7 Photographs of Test Configuration

Mode A


Page 21 of 49 1.0

Mode B

4.2 Conducted Emission at Telecommunication Ports Test

4.2.1 Limit of Conducted Emission at Telecommunication Ports Test

Class A equipment

Evacuation (MHz)	Voltage limits dB (uV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 to 0.5	97 to 87	84 to 74		
0.5 to 30	87	74		

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Class B equipment

Eraguanay (MHz)	Voltage limits dB (uV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 to 0.5	84 to 74	74 to 64			
0.5 to 30	74	64			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average

4. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correction Factor = Insertion loss of ISN + Cable loss

Margin Level = Measurement Value -Limit Value

4.2.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	TWO-LINE V-NETWORK	R&S	ENV216	CT-1-025-1	Apr. 01, 2017
2	EMI Test Receiver	R&S	ESCI	CT-01-024	Mar. 29, 2017
3	Impedance Stabilization Network	TESEQ	T8-CAT6	CT-1-105	Oct. 29, 2017
4	V-LISN	Schwarzbeck	NSLK8127	CT-1-104-1	Oct. 17, 2017
5	Test Cable	HANRUIN	5D-FB	CT-1-069-1	Jul. 26, 2017
6	50ohm Termination	N/A	N/A	CT-1-065-2	Mar. 29, 2017
7	Measurement Software	EZ-EMC	Ver: FA-03A	CT-3-012	No calibration request

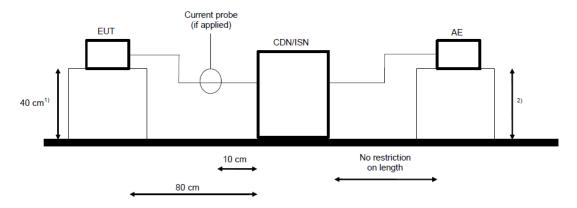
Note: 1. The calibration interval of the above test instruments is 12 months.

Page 23 of 49 1.0

4.2.3 Test Procedure

- a. The EUT was placed 0.4 meter from the horizontal ground plane with EUT being connected to power source through a line impedance stabilization network (LISN). The LISN at least be 80 cm from nearest chassis of EUT.
- b. The line impedance stabilization network (LISN) provides 50 ohm/50uH of coupling impedance for the measuring instrument. All other support equipments powered from additional LISN(s).
- c. Interrelating cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle. All I/O cables were positioned to simulate typical usage.
- d. All I/O cables that are not connected to a peripheral shall be bundle in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- e. ISN at least 80 cm from nearest chassis of EUT. The communication function of EUT was executed in normal condition. ISN was connected between EUT and associated equipment and ISN was connected directly to reference ground plane. The actual test configuration, please refer to EUT test photos.
- f. The receiver scanned from 150kHz to 30MHz for emissions in each of test modes. The test mode included 10Mbps, 100Mbps, 1Gbps and POE mode. Emission frequency and amplitude were recorded, recording at least six highest emissions.
- g. The EUT and cable configuration of the above highest emission levels were recorded. The test data of the worst case was recorded.

4.2.4 Deviation from Test Standard


No deviation

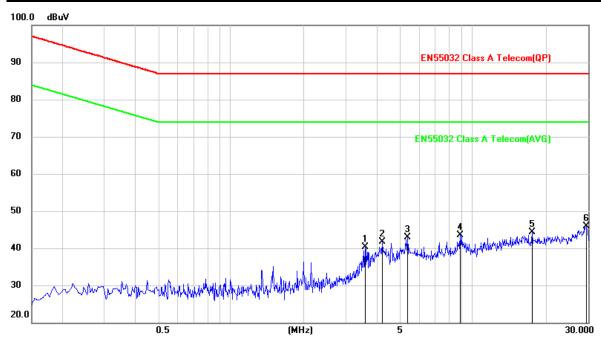
Page 24 of 49 1.0

4.2.5 Test Setup

AE = Associated equipment EUT = Equipment under test

- 1) Distance to the reference groundplane (vertical or horizontal).
- ²⁾ Distance to the reference groundplane is not critical.

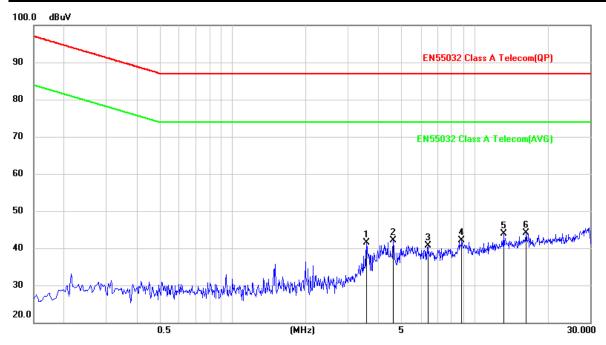
Note: Please refer to the 4.2.7 for the actual test configuration.


Page 25 of 49 1.0

4.2.6 Test Result

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Test Condition	LAN port with ISN (10Mbps)
Tested by	Guanwei Liao	Test Mode	A

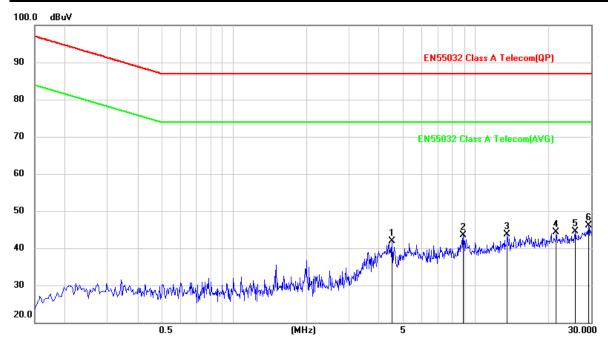
No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	3.5860	30.87	9.52	40.39	87.00	-46.61	peak
2	4.2460	32.22	9.52	41.74	87.00	-45.26	peak
3	5.3740	33.40	9.52	42.92	87.00	-44.08	peak
4	8.9100	33.90	9.55	43.45	87.00	-43.55	peak
5	17.6060	34.77	9.62	44.39	87.00	-42.61	peak
6	29.3860	36.12	9.73	45.85	87.00	-41.15	peak


- **Remark:** 1. QP = Quasi Peak, AVG = Average 2. Correction Factor = Insertion loss of ISN + Cable loss
 - 3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value -Limit Value

1.0 Page 26 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Test Condition	LAN port with ISN (100Mbps)
Tested by	Guanwei Liao	Test Mode	A

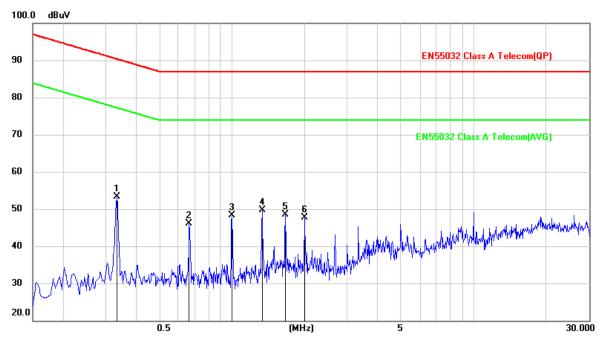
No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	3.5820	32.01	9.52	41.53	87.00	-45.47	peak
2	4.6220	32.52	9.52	42.04	87.00	-44.96	peak
3	6.4100	31.19	9.53	40.72	87.00	-46.28	peak
4	8.8540	32.58	9.55	42.13	87.00	-44.87	peak
5	13.1620	34.24	9.59	43.83	87.00	-43.17	peak
6	16.3900	34.40	9.61	44.01	87.00	-42.99	peak


- Remark: 1. QP = Quasi Peak, AVG = Average
 2. Correction Factor = Insertion loss of ISN + Cable loss
 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

Page 27 of 49 1.0

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Test Condition	LAN port with ISN (1Gbps)
Tested by	Guanwei Liao	Test Mode	A

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	4.5020	32.43	9.51	41.94	87.00	-45.06	peak
2	8.9060	34.01	9.55	43.56	87.00	-43.44	peak
3	13.5020	34.12	9.59	43.71	87.00	-43.29	peak
4	21.5860	34.60	9.65	44.25	87.00	-42.75	peak
5	25.7860	34.84	9.68	44.52	87.00	-42.48	peak
6	29.2540	36.31	9.73	46.04	87.00	-40.96	peak

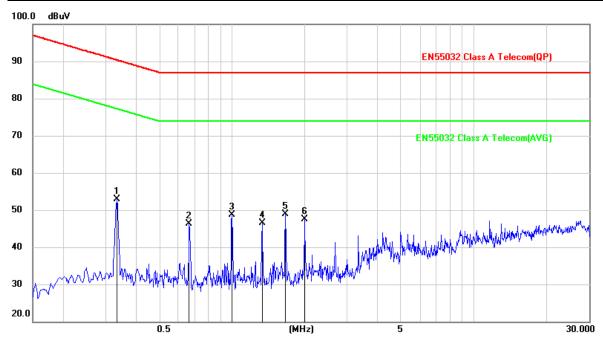

- Remark: 1. QP = Quasi Peak, AVG = Average
 2. Correction Factor = Insertion loss of ISN + Cable loss
 3. Measurement Value = Reading Level + Correct Factor
 - 4. Margin Level = Measurement Value –Limit Value

1.0 Page 28 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Test Condition	LAN port with ISN (10Mbps)
Tested by	Guanwei Liao	Test Mode	В

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.3339	43.47	9.75	53.22	90.35	-37.13	peak
2	0.6660	36.44	9.63	46.07	87.00	-40.93	peak
3	1.0020	38.79	9.59	48.38	87.00	-38.62	peak
4	1.3340	40.06	9.58	49.64	87.00	-37.36	peak
5	1.6655	39.00	9.55	48.55	87.00	-38.45	peak
6	2.0019	38.14	9.54	47.68	87.00	-39.32	peak

Remark: 1. QP = Quasi Peak, AVG = Average

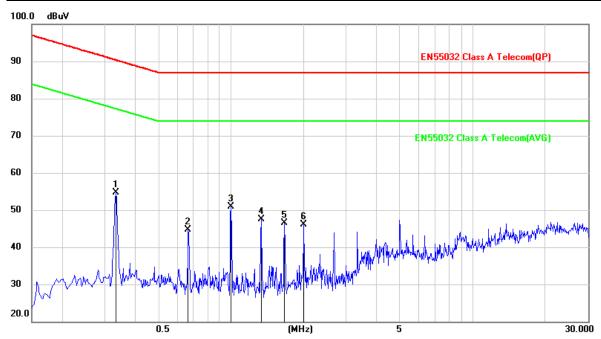

- 2. Correction Factor = Insertion loss of ISN + Cable loss
- 3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value -Limit Value

1.0 Page 29 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26℃, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Test Condition	LAN port with ISN (100Mbps)
Tested by	Guanwei Liao	Test Mode	В

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.3339	43.19	9.75	52.94	90.35	-37.41	peak
2	0.6660	36.60	9.63	46.23	87.00	-40.77	peak
3	1.0020	39.07	9.59	48.66	87.00	-38.34	peak
4	1.3340	36.92	9.58	46.50	87.00	-40.50	peak
5	1.6654	39.36	9.55	48.91	87.00	-38.09	peak
6	2.0019	38.03	9.54	47.57	87.00	-39.43	peak

- Remark: 1. QP = Quasi Peak, AVG = Average
 2. Correction Factor = Insertion loss of ISN + Cable loss
 3. Measurement Value = Reading Level + Correct Factor


 - 4. Margin Level = Measurement Value –Limit Value

1.0 Page 30 of 49

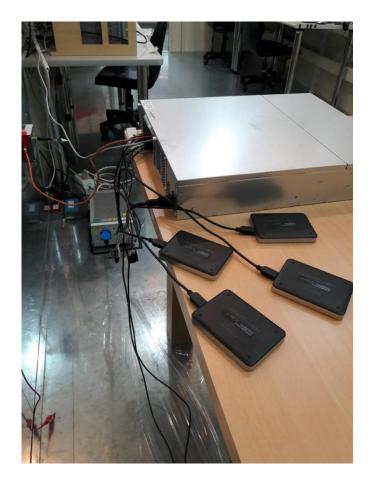
Test Voltage	100Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	9 kHz
Test Date	2018/03/14	Test Condition	LAN port with ISN (1Gbps)
Tested by	Guanwei Liao	Test Mode	В

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.3339	44.88	9.75	54.63	90.35	-35.72	peak
2	0.6660	35.02	9.63	44.65	87.00	-42.35	peak
3	1.0020	41.25	9.59	50.84	87.00	-36.16	peak
4	1.3340	37.87	9.58	47.45	87.00	-39.55	peak
5	1.6654	36.96	9.55	46.51	87.00	-40.49	peak
6	2.0019	36.64	9.54	46.18	87.00	-40.82	peak

- Remark: 1. QP = Quasi Peak, AVG = Average
 2. Correction Factor = Insertion loss of ISN + Cable loss
 3. Measurement Value = Reading Level + Correct Factor

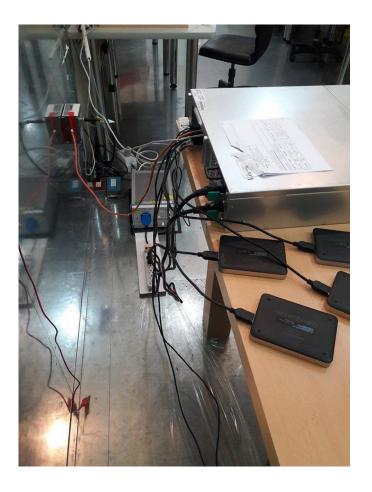
 - 4. Margin Level = Measurement Value –Limit Value

1.0 Page 31 of 49



4.2.7 Photographs of Test Configuration

Mode A


Page 32 of 49 1.

Mode B

4.3 Radiated Emission Measurement

4.3.1 Limits of Radiated Emission Measurement

Radiated Frequency range 30 MHz to 1000 MHz

Frequency (MHz)	Class A (at 10m)	Class B (at 10m)	
r requercy (WIIIZ)	dBuV/m	dBuV/m	
30 to 230	40	30	
230 to 1000	47	37	

Note: 1. The lower limit shall apply at the transition frequency.

Radiated Frequency range above 1 GHz

	Class A (at 3m)		Class B (at 3m)	
Frequency (GHz)	Average (dBuV/m)	Peak (dBuV/m)	Average (dBuV/m)	Peak (dBuV/m)
1 to 3	56	76	50	70
3 to 6	60	80	54	74

Note: 1. The lower limit shall apply at the transition frequency.

- 2. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 3. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

 $Correction\ Factor = Antenna\ factor + Cable\ loss\ (Antenna\ to\ preamplifier\) - preamplifier\ Gain$

+ Cable loss (preamplifier to receiver)

Margin Level = Measurement Value - Limit Value

- 4. Maximum internal signal source is defined as the maximum frequency of the device under test, or EUT highest frequency tuning of the operation or in the production or use of the device under test.
- 5. If the maximum frequency of the device under test is less than the internal source of 108MHz, the only measure to 1GHz.
- 6. If the maximum frequency of the device between 108MHz and 500MHz maximum frequency of the device under test ranged from internal sources, you must measure to 2GHz.
- 7. If the maximum frequency of the device under test between internal source of 500MHz and 1GHz, you must measure to 5GHz.
- 8. If the maximum frequency of the device under test is higher than the internal source of 1GHz, it must measure up to the maximum frequency of 5 times or 6GHz, choosing the less.

Page 34 of 49 1.0

4.3.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	Horn Antenna	Schwarzbeck	BBHA 9120 D	CT-1-001	Apr. 06, 2017
2	Bilog Antenna	Schwarzbeck	VULB 9168	CT-1-002-1	Apr. 05, 2017
3	OATS cable 12m	EMCI	EMCCFD400-N M-NM-12000	CT-1-111	Aug. 15, 2017
4	OATS cable 24m	EMCI	EMCCFD400-N M-NM-24000	CT-1-112	Aug. 15, 2017
5	Preamplifier	EM Electronics Corporation	EM30265	CT-1-013	Jul. 20, 2017
6	Test Cable	HARBOUR	27478-RG400	CT-1-121	Aug. 15, 2017
7	EMI Test Receiver	Keysight	N9038A	CT-9-007	Jun. 01, 2017
8	Measurement Software	Ez-EMC	Ver : FA-03A2 RE	CT-3-012	No calibration request

Note: 1. The calibration interval of the above test instruments is 12 months.

Page 35 of 49 1.0

4.3.3 Test Procedure

- a. The EUT was placed on the top of a turntable 0.8 meters above the ground at a 3 m or 10 m open area test site. The table was rotated 360 degrees to determine the position of the high radiation emissions.
- b. The height of the test antenna shall vary between 1 m to 4 m. Both vertical and horizontal polarizations of the antenna were set to make the measurement.
- c. The EUT was set up as per the test configuration to simulate typical usage per the user's manual. All I/O cables were positioned to simulate typical usage. The actual test configuration, please refer to EUT test photos.
- d. The initial step in collecting radiated emission data is a Spectrum Mode scanning the measurement frequency range.

Blow 1GHz:

Reading in which marked as QP or Peak means measurements by using Spectrum Mode with detector RBW=120kHz.

If the Spectrum Mode measured peak value compliance with and lower than Quasi Peak Limit, the EUT shall be deemed to meet QP Limits.

Above 1GHz:

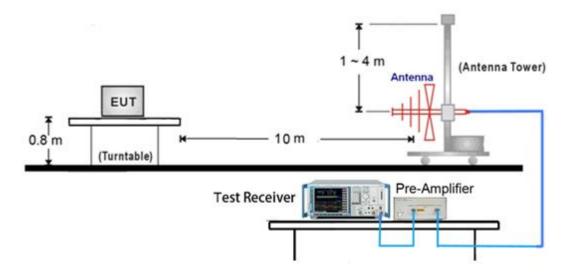
Reading in which marked as Peak & AVG means measurements by using Spectrum Mode with setting in RBW=1MHz.

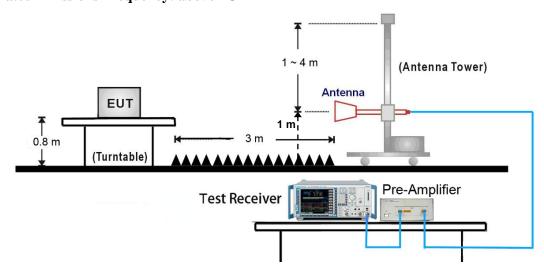
If the Spectrum Mode measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak and AVG Limits.

e. Emission frequency and amplitude were recorded, recording at least six highest emissions. The EUT and cable configuration of the above highest emission levels were recorded. The test data of the worst case was recorded.

4.3.4 Deviation from Test Standard

No deviation


Page 36 of 49 1.0



4.3.5 Test Setup

< Radiated Emissions Frequency: 30 MHz to 1000 MHz >

< Radiated Emissions Frequency: above 1GHz>

Note:

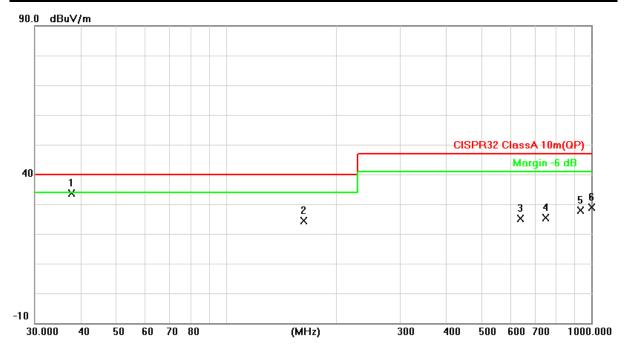
- (1) Please refer to the 4.3.7 for the actual test configuration.
- (2) The formula of measured value as: Test Result = Reading + Correction Factor
- (3) Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain (if use)

Margin Level = Measurement Value - Limit Value

Page 37 of 49 1.0

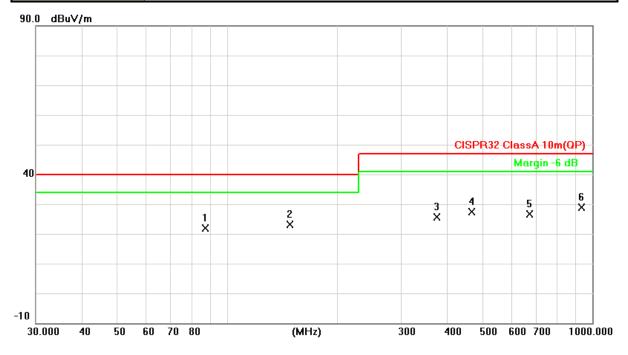

Report No: WD-EV-R-180140-00

4.3.6 Test Result

Test Voltage	100Vac, 60Hz	Frequency Range	30 – 1000 MHz
Environmental Conditions	26℃, 53% RH	6dB Bandwidth	120 kHz
Test Date	2018/04/24	Test Distance	10m
Tested by	Duncan Cheng	Polarization	Vertical
Test Mode	A		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	37.7599	51.83	-18.11	33.72	40.00	-6.28	QP	100	249
2	162.8900	44.23	-19.94	24.29	40.00	-15.71	QP	100	190
3	640.1300	38.11	-12.93	25.18	47.00	-21.82	QP	100	43
4	749.7400	36.27	-11.00	25.27	47.00	-21.73	QP	150	209
5	933.0700	36.54	-8.59	27.95	47.00	-19.05	QP	300	104
6	1000.0000	36.86	-8.02	28.84	47.00	-18.16	QP	100	160

Remark: 1. QP = Quasi Peak


- 2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) preamplifier Gain + Cable loss (preamplifier to receiver)
- 3. Measurement Value = Reading Level + Correct Factor
- 4. Margin Level = Measurement Value Limit Value

1.0 Page 38 of 49

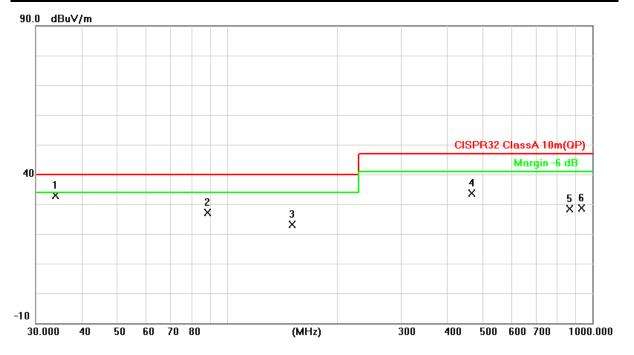
Test Voltage	100Vac, 60Hz	Frequency Range	30 – 1000 MHz
Environmental Conditions	26℃,53% RH	6dB Bandwidth	120 kHz
Test Date	2018/04/24	Test Distance	10m
Tested by	Duncan Cheng	Polarization	Horizontal
Test Mode	A		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	87.2300	46.44	-24.59	21.85	40.00	-18.15	QP	400	209
2	148.3400	43.05	-19.85	23.20	40.00	-16.80	QP	200	123
3	375.3200	44.50	-18.83	25.67	47.00	-21.33	QP	100	220
4	466.5000	43.52	-16.16	27.36	47.00	-19.64	QP	200	201
5	672.1400	39.04	-12.49	26.55	47.00	-20.45	QP	100	210
6	933.0700	37.41	-8.59	28.82	47.00	-18.18	QP	100	86

Remark: 1. QP = Quasi Peak

- 2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) preamplifier Gain
- + Cable loss (preamplifier to receiver)

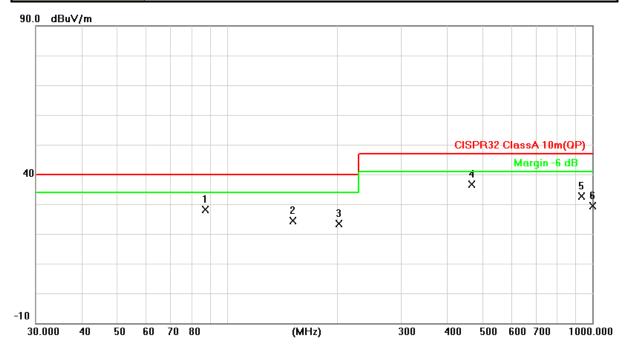
 3. Measurement Value = Reading Level + Correct Factor


 4. Margin Level = Measurement Value Limit Value

1.0 Page 39 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	30 – 1000 MHz
Environmental Conditions	26°C,53% RH	6dB Bandwidth	120 kHz
Test Date	2018/04/24	Test Distance	10m
Tested by	Duncan Cheng	Polarization	Vertical
Test Mode	В		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	33.8800	51.10	-18.11	32.99	40.00	-7.01	QP	100	42
2	88.2000	51.90	-24.73	27.17	40.00	-12.83	QP	100	109
3	150.2800	42.95	-19.84	23.11	40.00	-16.89	QP	100	185
4	466.5000	49.78	-16.16	33.62	47.00	-13.38	QP	150	137
5	864.2000	37.92	-9.58	28.34	47.00	-18.66	QP	100	109
6	933.0700	37.30	-8.59	28.71	47.00	-18.29	QP	118	360


- Remark: 1. QP = Quasi Peak
 2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) preamplifier Gain
 - + Cable loss (preamplifier to receiver)
 - 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

1.0 Page 40 of 49

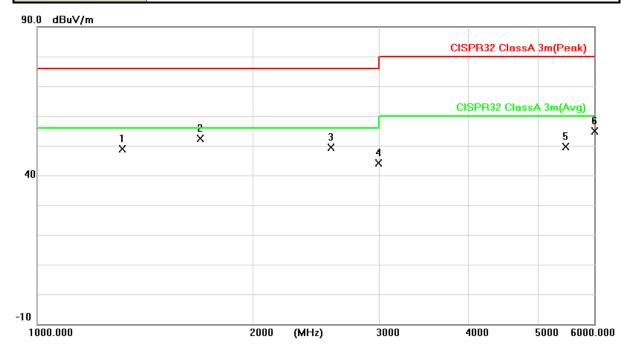
Test Voltage	100Vac, 60Hz	Frequency Range	30 – 1000 MHz
Environmental Conditions	26℃,53% RH	6dB Bandwidth	120 kHz
Test Date	2018/04/24	Test Distance	10m
Tested by	Duncan Cheng	Polarization	Horizontal
Test Mode	В		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	87.2300	52.69	-24.59	28.10	40.00	-11.90	QP	400	197
2	151.2500	44.20	-19.83	24.37	40.00	-15.63	QP	200	109
3	201.6900	48.12	-24.62	23.50	40.00	-16.50	QP	150	261
4	466.5000	52.74	-16.16	36.58	47.00	-10.42	QP	100	309
5	933.0700	41.21	-8.59	32.62	47.00	-14.38	QP	100	81
6	1000.0000	37.43	-8.02	29.41	47.00	-17.59	QP	100	81

Remark: 1. QP = Quasi Peak

- 2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) preamplifier Gain
- + Cable loss (preamplifier to receiver)

 3. Measurement Value = Reading Level + Correct Factor


 4. Margin Level = Measurement Value Limit Value

1.0 Page 41 of 49

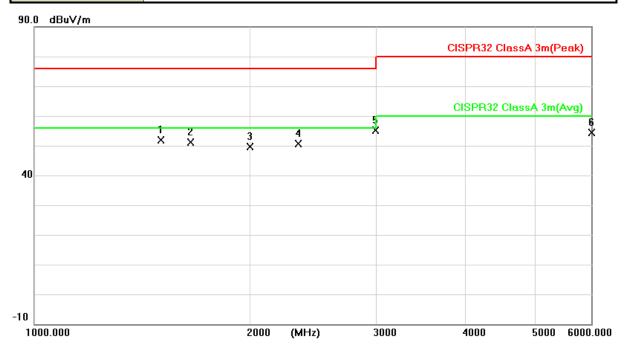
Test Voltage	100Vac, 60Hz	Frequency Range	1 – 6GHz
Environmental Conditions	26℃,53% RH	6dB Bandwidth	1MHz
Test Date	2018/04/24	Test Distance	3m
Tested by	Duncan Cheng	Polarization	Vertical
Test Mode	A		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	1315.000	61.32	-12.36	48.96	76.00	-27.04	QP	100	170
2	1690.000	62.57	-10.11	52.46	76.00	-23.54	QP	100	195
3	2570.000	55.59	-6.09	49.50	76.00	-26.50	QP	100	360
4	2995.000	48.36	-4.31	44.05	76.00	-31.95	QP	100	159
5	5460.000	45.33	4.22	49.55	80.00	-30.45	QP	100	360
6	6000.000	49.84	5.06	54.90	80.00	-25.10	QP	100	7

- $\begin{array}{ll} \textbf{Remark:} & 1. \ peak = Peak, \ AVG = Average \\ & 2. \ Correction \ Factor = Antenna \ factor + Cable \ loss \ (Antenna \ to \ preamplifier \) \ \ preamplifier \ Gain \end{array}$

 - + Cable loss (preamplifier to receiver)

 3. Measurement Value = Reading Level + Correct Factor


 4. Margin Level = Measurement Value Limit Value

1.0 Page 42 of 49

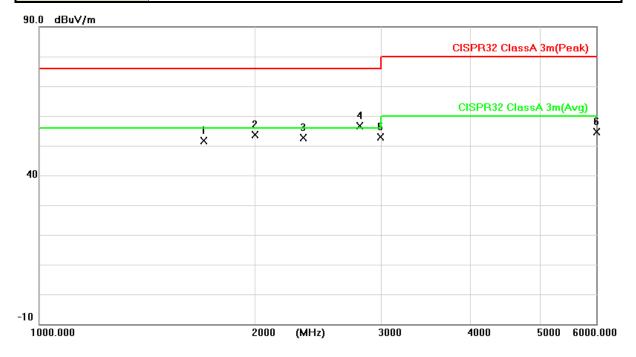
Test Voltage	100Vac, 60Hz	Frequency Range	1 – 6GHz
Environmental Conditions	26℃,53% RH	6dB Bandwidth	1MHz
Test Date	2018/04/24	Test Distance	3m
Tested by	Duncan Cheng	Polarization	Horizontal
Test Mode	A		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	1500.000	62.91	-11.05	51.86	76.00	-24.14	QP	100	360
2	1650.000	61.37	-10.31	51.06	76.00	-24.94	QP	100	159
3	2000.000	58.31	-8.58	49.73	76.00	-26.27	QP	100	173
4	2335.000	57.75	-7.12	50.63	76.00	-25.37	QP	100	239
5	2995.000	59.35	-4.31	55.04	76.00	-20.96	QP	100	210
6	5995.000	49.35	5.05	54.40	80.00	-25.60	QP	100	20

- $\begin{array}{ll} \textbf{Remark:} & 1. \ peak = Peak, \ AVG = Average \\ & 2. \ Correction \ Factor = Antenna \ factor + Cable \ loss \ (Antenna \ to \ preamplifier \) \ \ preamplifier \ Gain \end{array}$

 - + Cable loss (preamplifier to receiver)

 3. Measurement Value = Reading Level + Correct Factor

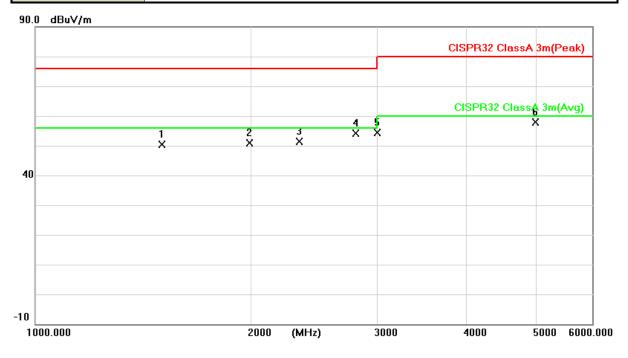

 4. Margin Level = Measurement Value Limit Value

1.0 Page 43 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	1 – 6GHz
Environmental Conditions	26℃,53% RH	6dB Bandwidth	1MHz
Test Date	2018/04/24	Test Distance	3m
Tested by	Duncan Cheng	Polarization	Vertical
Test Mode	В		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	1695.000	61.73	-10.08	51.65	76.00	-24.35	peak	100	183
2	2000.000	62.18	-8.58	53.60	76.00	-22.40	peak	100	342
3	2335.000	59.72	-7.12	52.60	76.00	-23.40	peak	100	165
4	2800.000	61.86	-5.13	56.73	76.00	-19.27	peak	100	128
5	2995.000	57.22	-4.31	52.91	76.00	-23.09	peak	100	193
6	5990.000	49.48	5.04	54.52	80.00	-25.48	peak	100	16

- Remark: 1. peak = Peak, AVG = Average
 2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) preamplifier Gain
 + Cable loss (preamplifier to receiver)


 - 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

1.0 Page 44 of 49

Test Voltage	100Vac, 60Hz	Frequency Range	1 – 6GHz	
Environmental Conditions	26℃,53% RH	6dB Bandwidth	1MHz	
Test Date	2018/04/24	Test Distance	3m	
Tested by	Duncan Cheng	Polarization	Horizontal	
Test Mode	В			

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	1500.000	61.33	-11.05	50.28	76.00	-25.72	peak	100	5
2	1990.000	59.61	-8.63	50.98	76.00	-25.02	peak	100	157
3	2335.000	58.47	-7.12	51.35	76.00	-24.65	peak	100	60
4	2800.000	59.22	-5.13	54.09	76.00	-21.91	peak	100	75
5	3000.000	58.62	-4.29	54.33	76.00	-21.67	peak	100	210
6	4995.000	54.47	3.45	57.92	80.00	-22.08	peak	100	220

- $\begin{array}{ll} \textbf{Remark:} & 1. \ peak = Peak, \ AVG = Average \\ & 2. \ Correction \ Factor = Antenna \ factor + Cable \ loss \ (Antenna \ to \ preamplifier \) \ \ preamplifier \ Gain \end{array}$

 - + Cable loss (preamplifier to receiver)

 3. Measurement Value = Reading Level + Correct Factor

 4. Margin Level = Measurement Value Limit Value


1.0 Page 45 of 49

4.3.7 Photographs of Test Configuration

Radiated Emission Test (30MHz~1GHz) Mode A

Page 46 of 49 1.0

Radiated Emission Test (Above 1GHz) Mode A

< End Page >